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of azemethine ylides [14]. In a subsequent publication, in the (distant) future, instead of receiving a vaccine shot
amino-derivatized nanotubes were covalently linked to a by syringe, a patient may lick a lollypop coated with
peptide sequence derived from the foot-and-mouth dis- functionalized carbon nanotubes acting as vaccine de-
ease virus (FMDV), generating monoconjugated pep- livery systems.
tide-CNT [4]. Now this functionalization method has ex-
tended to enable the linkage of two FMDV peptide
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ses. In this issue of Chemistry & Biology, Schulz andNew Structural Insights into the
colleagues describe the crystal structure of scyptolinInhibition of Serine Proteases A, a cyclic peptide produced by cyanobacteria, com-
plexed with elastase. Together with structures for aby Cyclic Peptides from Bacteria
related inhibitor bound to trypsin, the work may assist
in the design of reversible serine protease inhibitors.

The inhibition of enzymes employing a nucleophilic
serine residue by natural products has been studied Classic enzymology studies combined with pioneering

structural biology have led to the serine proteases beingfor many years. More recently, high-resolution struc-
tural analyses have begun to augment kinetic analy- among the best characterized of all enzyme families.
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These studies identified the catalytic triad of active site
residues and other important features central to cataly-
sis such as the oxyanion hole and the P1 side chain
binding pockets. Although aspects of the mechanism
are still under debate, it is beyond doubt that catalysis
proceeds via an acyl-enzyme complex formed with the
nucleophilic serine (for recent review see [1–3]).

In addition to proteases, many other hydrolytic en-
zymes employ a nucleophilic serine residue to form an
acyl-enzyme complex during catalysis. Perhaps the best
known of these are the transpeptidases involved in bac-
terial cell wall biosynthesis, which are the targets of the
penicillin antibiotics and the �-lactamases that mediate
bacterial resistance to penicillins (for review see [4, 5]).

Due to emerging pharmaceutical applications ranging
from cardiovascular disease to cancer, interest in the
selective inhibition of human proteases continues to
grow. The need for selective inhibitors is highlighted by
the genomic assignment of hundreds of human prote-
ases, most with little in the way of functional assignment.
One approach to functional assignment is via the use
of inhibitors selective for individual enzymes. In the case
of serine proteases, decades of work have resulted in
a plethora of inhibitors [6]. However, many of these do
not fulfill the requirements of simple modification and
suitability for in vivo application. There is thus a continu-
ing interest in the development of generic templates
that can be readily modified for use in pharmaceutical
and functional analyses.

Although the methods of combinatorial synthesis/bio-
synthesis combined with high-throughput approaches
may in time lead to novel and unexpected templates,
at present the “ingenuity” of microorganisms and plants
to produce natural products continues to provide the
most interesting lead structures. A paradigm for such
work comes from the development of the penicillin anti-
biotics, where the activity of a naturally produced nu-
cleus or template was improved by the use of unnatural
side chains. In more recent work starting from a naturally
occurring steroid based inhibitor of thrombin, a serine
protease involved in the blood clotting cascade, re-
searchers were able to develop low molecular weight
bicyclic “trans-lactam” templates useful for the inhibi-
tion of a range of serine proteases [7].

A current issue with respect to the chronic pharma- Figure 1. Acyl-Enzyme Complexes of Serine Proteases
ceutical use of protease inhibitors is the nature of the Views from crystal structures of (A) P1 Leu and Ahp residues of
interaction with the target. There is a view that the long- scyptolin A at the active site of elastase (PDB ID code 1OKX), (B)

P1 Arg and Ahp residues of A90720A at the active site of trypsinterm use of irreversible covalently binding inhibitors may
(PDB ID code 1TPS) (note the similarity with scyptolin A), (C) P1 Ilecause toxicity problems e.g., due to the long-term accu-
of the acyl-enzyme complex of human �-casomorphin-7 peptidemulation of nonselective acylation. There is thus an in-
substrate at the active site of porcine pancreatic elastase (PPE)

terest in the development of generic templates that op- (PDB ID code 1HAX), and (D) a stable acyl-enzyme complex formed
erate via noncovalent inhibition. by a monocyclic �-lactam inhibitor and PPE (PDB ID code 1BTU).

Protein- and peptide-based inhibitors of serine en- Note the presence of the hydrolytic water in (C) but not (A), (B), or
(D) and the rotation of the carbonyl of the ester out of the oxyanionzymes are well known [8, 9]. In humans, protease activity
hole in (D). The Ser-His-Asp catalytic triad and oxyanion hole formedis regulated by a variety of mechanisms, including zymo-
by the main chain nitrogens of Ser195 and Gly193 are shown. Thegen formation and the presence of inhibitor proteins
classical serine protease numbering scheme is used. Protein carbon

including the serpins (serine protease inhibitors), that atoms are colored gray, while ligand carbon atoms are green. Oxy-
inhibit their targets via a remarkable mechanism involv- gen, nitrogen, and sulfur atoms are red, blue, and yellow, respec-
ing a major conformational change [9]. Cyclic peptides tively. Additional ligand residues of (A), (B), and (C) are omitted for

clarity; the arrows indicate the direction of omitted ligand binding.are common natural products of bacteria and have
proved a fruitful source of pharmaceutical leads.

In this issue of Chemistry & Biology, Schulz and co-
workers [10] describe the crystal structure of porcine
pancreatic elastase complexed with scyptolin A [11], a
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member of the cyanopeptolin family of depsipeptides Michael A. McDonough and Christopher J. Schofield
The Dyson Perrins Laboratory andproduced by Scyptonema hofmanni, a species of cyano-

bacterium [12] (Figure 1). Elastases characteristically The Oxford Centre for Molecular Sciences
South Parks Roadcatalyze the degradation of elastin found in connective

tissue. Porcine pancreatic elastase is closely related to Oxford
OX1 3QYhuman elastase, which is a current pharmaceutical tar-

get for diseases including emphysema, arthritis, and United Kingdom
cystic fibrosis. Together with a previously reported and
closely related structure of a cyanopeptolin (A90720A)
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